Cochlea & Auditory Nerve:

obligatory stages of auditory processing
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Defining the envelope of the
travelling wave

A crucial distinction
excitation pattern vs. frequency response

e Excitation pattern — the vibration pattern across
the basilar membrane to a single sound.
- Input = 1 sound.
- Measure at many places along the BM.

e Essentially the envelope of the travelling wave
e Related to a spectrum (amplitude by frequency).
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A crucial distinction
excitation pattern vs. frequency response

e Frequency response — the amount of vibration
shown by a particular place on the BM to
sinusoids of varying frequency.

- Input = many sinusoids.
- Measure at a single place on the BM.
- Band-pass filters at each position along the basilar

membrane.
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Two sides of the same coin:
Deriving excitation patterns for a 1 kHz
sinusoid from frequency responses
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Frequency responses with centre frequencies
running from 1400 — 600 Hz
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Frequency responses with centre frequencies
running from 1400 — 600 Hz
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Deriving excitation pattern from auditory filters
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Now the other way around:
filter shapes from excitation patterns
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Flip the orientation of the axis and
schematise
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The other side of the coin:
Deriving a frequency response at 1 kHz
from excitation patterns
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Excitation patterns with centre frequencies
running from 1200 — 400 Hz
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Excitation patterns with centre frequencies
running from 1200 — 400 Hz
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Deriving frequency responses from excitation

Laser Doppler Velocimetry

patterns
0
Note g, 0 .
shallower g -
Slope to ?20‘ / fhiers bead “5 200
right g z
40 / g 100
o e -
0 i] 1 1
Note o or 1 ’ FREQUENGY (kHz) "
shallower £ 2l ]
slope to 2 il ]
left - ‘
ety B http://www.wadalab.mech.tohoku.ac.jp/bmidv-e.htmi
...... — T T T T T
103I§ I l -J 10%f —=— 2z A - N
Modern = 20 581008 E n z
measure- - fﬁf\ i s
ments of the —'E ’ﬁ\\ﬁ E 1) S E
frequency & | \ . input/ € |
output £
c - N . . = 402 - K ‘ R .
membrane & | \6“ i funCttll_? ns é R Ly _
Consider the = L= ] basilar ol / : A _:
frequency 107 Es E membrane ; . 1
] ! 1 I - | LE13
response of a 2 3 4 5 6 7 8 910 20 PR N R R Co I R R
Q 20 40 G0 80 100 120

single place
on the BM

Frequency (kHz)

FIG. 10. A family of isointensity curves representing the gain (velocity
divided by stimulus pressure) of basilar-membrane responses to tone pips as
a function of frequency (abscissa) and intensity (parameter, in dB SPL}. The
thick line at bottom indicates the average motion of the stapes (Ruggero
et al., 1990). Data recorded in cochlea 1.13.
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FIG. 7. Velocity-intensity functions of basilar-membrane responses to tones
with frequency equal to and lower than CF (10 kHz). The straight dashed
line at right has a linear slope (1 dB/dB).
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Innervation of the cochlea

Neuron

90-95% of afferents are myelinated, synapsing with a single inner hair cell (IHC).

Cochlear
Nerve

Four aspects of firing patterns
on the auditory nerve

e The coding of intensity.

e The representation of the place
code.

e The representation of temporal
fine structure (for intervals ranging
up to =20 ms).

e The representation of gross
temporal structure.

Intensity

Rate-level
functions for
auditory nerve
fibres

Observe!
e Threshold
e Saturation
e Limited dynamic range
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However, firing rates
depend not only on
sinusoidal sound
intensity but also on
sound ...




Firing rate across frequency and level
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‘Audiograms’ of single auditory nerve fibres reflect BM tuning
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The ‘best’ frequency of a particular tuning curve depends
upon the BM position of the IHC to which the afferent
neuron is synapsing
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‘filtered’ is high-pass filter at 3.8 dB/octave. From Ruggero

et al. 2000

Temporal coding (up to =5 kHz)

Information about stimulus
frequency is not only coded by
which nerve fibres are active
(the place code) but also by
when the fibres fire (the time
code).




The firing of auditory nerve fibres is
synchronized to movements of the hair
cell cilia (at low enough frequencies)

Single Hakrcell

Play transdct.mov

Auditory nerves tend to fire to low-frequency sounds
at particular waveform times (phase locking).

Spikes

Time

Stimulus waveform (0.3 kHz)

Not the same as firing rate!

Evans (1975)

But phase-locking is limited to
lower frequencies ...

e Synchrony of neural firing is strong
up to about 1-2 kHz.

e There is no evidence of synchrony
above 5 kHz.

e The degree of synchrony
decreases steadily over the mid-
frequency range.

. as readily seen in a period histogram
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Period histograms across frequency
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Note half-wave rectification and synchrony index

Constructing an interval histogram
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Neural stimulation to a low
frequency tone
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Sound energy propagates to the characteristic place of the tone
where it causes deflection of the cochlear partition. Neural spikes,
when they occur, are synchronized to the peaks of the local
deflections. The sum of these neural spikes tends to mimic the wave
shape of the local deflections.

Period histograms to more complex
sounds
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Gross temporal structure
Enhanced response to sound onsets:
The value of novelty
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Where we've got to ...

e Quter ear channels sound to the middle ear,
and can be characterized as a bandpass filter.

¢ Middle ear effects an efficient transfer of
sound energy into the inner ear, again with
the characteristics of a bandpass filter.

e Inner ear
- Transduces basilar membrane movements into nerve
firings ...
- which are synchronised to peaks in the stimulating
waveform at low enough frequencies
- Performs a mechanical frequency analysis, which can

be envisioned as the result of analysis by a filter
bank.




Auditory Nerve Structure and Function
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What properties should the Modelling the hair cell/auditory

filter bank have? nerve synapse
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Modelling the hair cell/auditory
nerve synapse

period histograms across frequency
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Modelling the hair cell/auditory
nerve synapse

Neural stimulation to a low
frequency tone
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A spectrogram with ‘ear-like’ processing
4 .
We're done! (Giguere & Woodland, 1993)
(but need agc here) (typical spectrogram properties in italics)
e A first-stage broad band-pass linear filter to
_ mimic outer and middle ear effects (pre-
outer ear middle ear hair cells emphaS/s fl/ter)-
¢ A filterbank whose centre frequencies are
arranged in the same way as the human
I - tonotopic (frequency to place) map ... (equal
b—{ > spacing of filters in Hz).
J—— e with non-linear filters whose bandwidths
increase as level increases (linear filters with a
. fixed bandwoidth).
Dasiar fbres e Smearing of temporal information so as to

mimic the frequency limitation of phase
locking in the auditory nerve (smearing by
choice of temporal window/filter bandwidth —
no extra processing ).




An auditory spectrogram
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An auditory spectrogram looks like a wide-band spectrogram at high
frequencies and a narrow-band spectrogram at low frequencies (but

Wi

th more temporal structure).

Next lab: A computer
implementation of essentially
this model

inner
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A cochlear simulation
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Flip it around

N N )

A cochlear simulation

How should we look at the

output of the model?

Could look at the output
waveforms

input signal
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hard to see what is going on

(especially for complex waves)
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Solution: encode wave amplitude
in a different way

—\/V\/\/\/\/\/\' waveform at 200 Hz
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waveform amplitude is recoded as
the darkness of the trace

Encode wave amplitude as trace
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Construct the output display one
strip at a time

input signal at 200 Hz
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Construct the output display one
strip at a time

input signal at 4 kHz

output display

4 kHz + 200 Hz
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Auditory and ordinary spectrograms
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